Using MBSE

Lessons from a real world implementation

Why make a model?

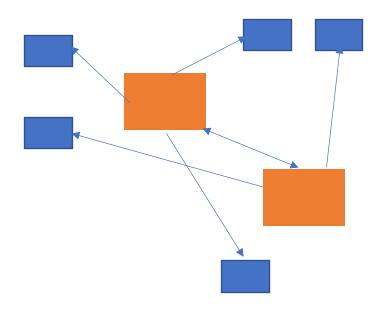
- To see what a design will look like (literally or figuratively)
- To show a proposed design to other people
- To refine a design based on feedback about the model
- To analyze potential problems with a design
- To save time and money by NOT implementing a bad design!
- To understand and simulate the behavior of a process or a mechanism

Models are an essential design tool!

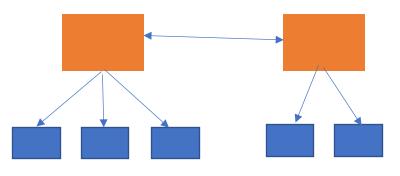
Barriers to implementing MBSE

- Time and effort required to learn to model well
- Poor tools
- Complex or inappropriate methodologies for modeling
- Quality Assurance systems that require text based documents
- Reluctance to change established ways of working
- Large up-front costs for benefits that are long term
- The expectation that MBSE is a silver bullet that creates good designs

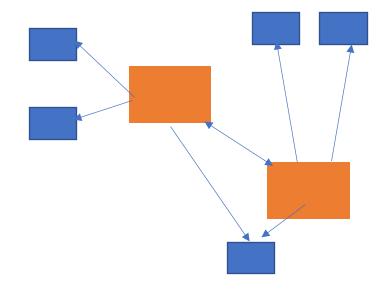
Work with management to reduce these barriers!


Lessons learned from mentoring modelers

- Group Review: Have other people review your models. Learn from their comments. And learn from their models too!
- Nomenclature: Choose names that correctly describe the object and are consistent with other names in the model.
- Layout: Use spatial thinking to make your model layout communicate the design. Messy layouts often indicate a poorly-thought out design.


Make your model communicate your design clearly!

Layout communicates design


Layout that doesn't match design

Layout that matches design

Design that matches layout

Opportunities

- MBSE tools make it much easier to describe, communicate and update designs than traditional text-based documents.
- MBSE tools allow you to simulate a design. Simulation reveals logical gaps and inconsistencies BEFORE implementation.
- MBSE tools can be integrated with automated testing systems. One model can replace both requirements and test protocols.

There are many ways that MBSE can be used to improve productivity!

References

- SysML Distilled by Lenny Delligatti
- A Practical Guide to SysML by Sanford Friedenthal, Alan Moore and Rick Steiner
- The Visual Display of Quantitative Information (Second Edition) by Edward R. Tufte